MATH 347: FUNDAMENTAL MATHEMATICS, FALL 2015

HOMEWORK 5
Due on Wednesday, Oct 7

Exercises from the textbook. 3.41, 3.44 ${ }^{1}$, 4.11, 4.12, 4.20(a)(b), 4.29, 4.31

Out-of-the-textbook exercises (these are as mandatory as the ones from the textbook).

1. Prove that for any $a, b \in \mathbb{R}$,

$$
a^{n}-b^{n}=(a-b) \sum_{i=0}^{n-1} a^{n-1-i} b^{i},
$$

with the convention that any number (including 0) to the power 0 is 1 .
Hint: Prove this by induction on n. To make sure you don't get confused with indices of the summations, replace the \sum notation with the usual (more informal) notation:

$$
\sum_{i=0}^{n-1} a^{n-1-i} b^{i}=a^{n-1}+a^{n-2} b^{1}+a^{n-3} b^{2}+\ldots+a^{2} b^{n-3}+a^{1} b^{n-2}+b^{n-1}
$$

2. Let $\left(a_{n}\right)_{n \geq 0}$ be a sequence of real numbers satisfying

$$
\begin{aligned}
& a_{0}=0, a_{1}=1 \\
& a_{n+2}=a_{n+1}+a_{n} .
\end{aligned}
$$

This is the well-known Fibonacci sequence. Prove that for every $n \geq 0$,

$$
a_{n}=\frac{\varphi^{n}-\psi^{n}}{\varphi-\psi}
$$

where φ and ψ are the two distinct solutions to $x-1=\frac{1}{x}$; in other words, φ is the golden ratio $\frac{1+\sqrt{5}}{2}$ and ψ is its conjugate $\frac{1-\sqrt{5}}{2}$.
Hint: First, write the proposed expression for a_{n} using only numbers, then prove it by strong induction.
3. For each of the following functions, determine whether it is injective/surjective/bijective.
(a) $f: \mathbb{N} \rightarrow \mathbb{N}$ defined by $f(n)=3 n-2$.
(b) $f: \mathbb{N} \rightarrow \mathbb{Z}$ defined by

$$
f(n):=\left\{\begin{array}{cl}
-\frac{n}{2} & \text { if } n \text { is even } \\
\frac{n-1}{2} & \text { if } n \text { is odd }
\end{array} .\right.
$$

(c) $f: \mathbb{Z} \rightarrow \mathbb{N}$ defined by $f(m):=m^{2}+3$
4. Let O and E denote the sets of odd and even natural numbers, respectively. Find bijections between the following sets:

[^0](a) O and \mathbb{N};
(b) E and \mathbb{N};
(c) O and E.

Make sure to prove that the functions you define are indeed bijections by either showing that they are injective and surjective, or that they admit inverse functions.

[^0]: ${ }^{1}$ Hint for 3.44: The main point is that starting from 18 , all numbers are of this form. Prove this by strong induction.

